世外云

Python编程之基于概率论的分类方法:朴素贝叶斯

朴素贝叶斯是一种基于概率论的分类方法,它假设特征之间是独立的,在实际应用中,朴素贝叶斯算法通常用于文本分类、垃圾邮件过滤等任务。

一、朴素贝叶斯算法原理

朴素贝叶斯算法的核心思想是基于贝叶斯定理,通过计算给定特征条件下某个类别出现的概率,来判断该样本属于哪个类别,朴素贝叶斯算法分为以下几个步骤:

Python编程之基于概率论的分类方法:朴素贝叶斯-图1

1. 计算先验概率:根据训练数据集,计算每个类别在所有样本中出现的概率,即先验概率。

2. 计算条件概率:对于每个特征,计算该特征在不同类别下的条件概率,条件概率表示在某个类别下,某个特征取某个值的概率。

3. 预测:对于一个新的样本,根据贝叶斯定理计算其属于每个类别的概率,然后选择概率最大的类别作为预测结果。

二、朴素贝叶斯算法实现

下面以文本分类为例,介绍朴素贝叶斯算法的Python实现,假设我们有一个包含文本和对应类别的训练数据集,以及一个需要分类的新文本。

Python编程之基于概率论的分类方法:朴素贝叶斯-图2

1. 数据预处理:首先对训练数据集进行预处理,包括分词、去除停用词等操作,然后对每个文本提取特征,这里我们使用词袋模型(Bag of Words)表示文本特征。

import jieba
from collections import Counter

def preprocess(text):
    words = jieba.cut(text)
    return ' '.join(words)

def extract_features(text, vocabulary):
    words = text.split()
    return [vocabulary[word] for word in words if word in vocabulary]

2. 计算先验概率:统计训练数据集中每个类别的数量,然后计算每个类别的先验概率。

def calculate_prior_probabilities(data):
    classes = set([item[-1] for item in data])
    prior_probabilities = {cls: sum(1 for item in data if item[-1] == cls) / len(data) for cls in classes}
    return prior_probabilities

3. 计算条件概率:对于每个特征,计算该特征在不同类别下的条件概率,这里我们使用拉普拉斯平滑(Laplace smoothing)解决数据稀疏问题。

def calculate_conditional_probabilities(data, vocabulary):
    conditional_probabilities = {}
    for cls in set([item[-1] for item in data]):
        conditional_probabilities[cls] = {}
        total_words = sum(len(extract_features(item[0], vocabulary)) for item in data if item[-1] == cls)
        for word in vocabulary:
            conditional_probabilities[cls][word] = (sum(1 for item in data if item[-1] == cls and word in extract_features(item[0], vocabulary)) + 1) / (total_words + len(vocabulary))
    return conditional_probabilities

4. 预测:对于一个新的文本,首先提取特征,然后根据贝叶斯定理计算其属于每个类别的概率,最后选择概率最大的类别作为预测结果。

def predict(test_text, data, vocabulary, conditional_probabilities):
    features = extract_features(test_text, vocabulary)
    posterior_probabilities = {}
    for cls in set([item[-1] for item in data]):
        posterior_probabilities[cls] = conditional_probabilities[cls].get('UNK', 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if word in conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for word in features] if wordin conditional_probabilities else 0) * prior_probabilities[cls] for cls in set([item[-1] for item in data])] for wordin conditional_probabilities else 0) * prior_probabilities[cls] for clsin conditional_probabilities else 0) * prior_probabilities[cls] for clsin conditional_probabilities else 0) * prior_probabilities[cls] for clsin conditional_probabilities else 0) * prior_probabilities[cls]for clsin conditional_probabilities else 0) * prior_probabilities[cls]for clsin conditional_probabilities else 0) * prior_probabilities[cls]for clsin conditional_probabilities else 0) * prior_probabilities[cls]for clsin conditional_probabilities else 0) * prior_probabilities[cls]for clsin conditional_probabilities else 0) * prior_probabilities[cls]for clsin conditional_probabilities else 0) * prior_probabilities[cls]].max()
    return max(posterior_probabilities, key=posterior_probabilities.get)

5. 测试:使用测试数据集评估模型性能。

def evaluate(test_data, test_labels, test_text, data, vocabulary, conditional_probabilities):
    predictions = [predict(test, data, vocabulary, conditional_probabilities) for test, label in zip(test_data, test_labels)]
    accuracy = sum(predictions == test_labels) / len(test_labels)
    return accuracy

三、相关问题与解答

问题1:为什么朴素贝叶斯算法假设特征之间是独立的?这样做有什么优缺点?

答:朴素贝叶斯算法假设特征之间是独立的,是因为在实际应用中,特征之间的依赖关系很难准确获取,通过简化假设,朴素贝叶斯算法可以大大降低计算复杂度,提高分类速度,这种独立性假设在很多情况下是不成立的,可能导致分类性能下降,为了解决这个问题,可以使用高斯朴素贝叶斯(Gaussian Naive Bayes)等考虑特征之间关系的改进算法。

分享:
扫描分享到社交APP
上一篇
下一篇
发表列表
请登录后评论...
游客 游客
此处应有掌声~
评论列表

还没有评论,快来说点什么吧~